skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Kang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract On June 6, 2023, the Kakhovka Dam in Ukraine experienced a catastrophic breach that led to the loss of life and substantial economic values. Prior to the breach, the supporting structures downstream of the spillway had shown signs of being compromised. Here, we use multi-source satellite data, meteorological reanalysis, and dam design criteria to document the dam’s pre-failure condition. We find that anomalous operation of the Kakhovka Dam began in November 2022, following the destruction of a bridge segment, which led to persistent overtopping from late April 2023 up to the breach, contributing to the erosion of the spillway foundation. Moreover, our findings also highlight safety and risk-reduction measures pivotal in avoiding such scenarios. To help prevent future disasters, we advocate for greater transparency in the design parameters of key water structures to enable risk management, and conclude that remote sensing technology can help ensuring water infrastructure safety. 
    more » « less
  2. Abstract. Wildfire is a critical ecological disturbance in terrestrial ecosystems. Australia, in particular, has experienced increasingly large and severe wildfires over the past 2 decades, while globally fire risk is expected to increase significantly due to projected increases in extreme weather and drought conditions. Therefore, understanding and predicting fire severity is critical for evaluating current and future impacts of wildfires on ecosystems. Here, we first introduce a vegetation-type-specific fire severity classification applied to satellite imagery, which is further used to predict fire severity during the fire season (November to March) using antecedent drought conditions, fire weather (i.e. wind speed, air temperature, and atmospheric humidity), and topography. Compared to fire severity maps from the fire extent and severity mapping (FESM) dataset, we find that fire severity prediction results using the vegetation-type-specific thresholds show good performance in extreme- and high-severity classification, with accuracies of 0.64 and 0.76, respectively. Based on a “leave-one-out” cross-validation experiment, we demonstrate high accuracy for both the fire severity classification and the regression using a suite of performance metrics: the determination coefficient (R2), mean absolute error (MAE), and root-mean-square error (RMSE), which are 0.89, 0.05, and 0.07, respectively. Our results also show that the fire severity prediction results using the vegetation-type-specific thresholds could better capture the spatial patterns of fire severity and have the potential to be applicable for seasonal fire severity forecasts due to the availability of seasonal forecasts of the predictor variables. 
    more » « less
  3. Abstract. Forest fires, while destructive and dangerous, are important to the functioning and renewal of ecosystems. Over the past 2 decades, large-scale, severe forest fires have become more frequent globally, and the risk is expected to increase as fire weather and drought conditions intensify. To improve quantification of the intensity and extent of forest fire damage, we have developed a 30 m resolution global forest burn severity (GFBS) dataset of the degree of biomass consumed by fires from 2003 to 2016. To develop this dataset, we used the Global Fire Atlas product to determine when and where forest fires occurred during that period and then we overlaid the available Landsat surface reflectance products to obtain pre-fire and post-fire normalized burn ratios (NBRs) for each burned pixel, designating the difference between them as dNBR and the relative difference as RdNBR. We compared the GFBS dataset against the Canada Landsat Burned Severity (CanLaBS) product, showing better agreement than the existing Moderate Resolution Imaging Spectrometer (MODIS)-based global burn severity dataset (MOdis burn SEVerity, MOSEV) in representing the distribution of forest burn severity over Canada. Using the in situ burn severity category data available for the 2013 wildfires in southeastern Australia, we demonstrated that GFBS could provide burn severity estimation with clearer differentiation between the high-severity and moderate-/low-severity classes, while such differentiation among the in situ burn severity classes is not captured in the MOSEV product. Using the CONUS-wide composite burn index (CBI) as a ground truth, we showed that dNBR from GFBS was more strongly correlated with CBI (r=0.63) than dNBR from MOSEV (r=0.28). RdNBR from GFBS also exhibited better agreement with CBI (r=0.56) than RdNBR from MOSEV (r=0.20). On a global scale, while the dNBR and RdNBR spatial patterns extracted by GFBS are similar to those of MOSEV, MOSEV tends to provide higher burn severity levels than GFBS. We attribute this difference to variations in reflectance values and the different spatial resolutions of the two satellites. The GFBS dataset provides a more precise and reliable assessment of burn severity than existing available datasets. These enhancements are crucial for understanding the ecological impacts of forest fires and for informing management and recovery efforts in affected regions worldwide. The GFBS dataset is freely accessible at https://doi.org/10.5281/zenodo.10037629 (He et al., 2023). 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract Electric‐field‐controlled magnetism is of importance in realizing energy efficient, dense and fast information storage and processing. Strain‐mediated converse magneto‐electric (ME) coupling between ferromagnetic and ferroelectric heterostructure shows promise for realizing electric‐controlled magnetism at room temperature and is attracting a number of recent investigations. However, such ME‐effect studies have mainly focus on magnetic metals. In this work, high quality yttrium iron garnet (Y3Fe5O12(YIG)) films are deposited directly onto (100)‐oriented single‐crystal Pb (Mg1/3Nb2/3)0.7Ti0.3O3(PMN‐PT) substrates by means of magnetron sputtering. The electric‐field‐induced polarization switching and lattice strain in the PMN‐PT substrate results in two distinct magnetization states in the YIG film that are nonvolatile and electrically reversible. Because of the direct contact between the YIG and the PMN‐PT substrate, an efficient ME coupling and an almost 90° rotation of the easy axis of the YIG film can be realized. Furthermore, the electric‐field‐controlled hysteresis loop‐like ferromagnetic resonance field shifts and spin pumping signals are observed in Pt/YIG/PMN‐PT heterostructures. Thus, the obstacle is overcome via growing high‐quality YIG thin films directly onto PMN‐PT substrates and an efficient manipulation of magnetism and pure spin current transport by electric field is thereby realized. These findings are instructive for future low‐power magnetic insulator‐based spintronic devices. 
    more » « less